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1. Rayleigh-Bénard convection near the onset  

Henri Benard (PhD thesis, 1900) 
conducted the first systematic study 
of convection patterns in a shallow 
layer heated from below. 



Lord Rayleigh 



Equations of motion  
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Dimensionless form  



Stability analysis of the onset of convection for a quiescent 
fluid layer in which heat is transported by diffusion 
 
Rayleigh’s results for the slip boundary conditions at both 
the top and bottom surfaces: 
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Sir Harold’s (1891 – 1989) results for no-slip boundary 
conditions at both the top and bottom surfaces: 

1708cRa  3.117ck 



convection rolls near 
the onset of R-B 
convection, Guenter 
Ahlers et al., Phys. 
Rev. E 1993. 

Convection patterns just above the onset  
(weak nonlinear analysis): 
 
• nature of the bifurcation  
    (supercritical vs. subcritical) 
• wavenumber selection 
• spatio-temporal chaos 
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2. Turbulent Rayleigh-Bénard convection (Ra >108)  
    in an upright cylinder  
Convection experiments using low temperature helium gas  
at University of Chicago  
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D=20 cm 

cooling chamber 

heating plate 

H ∆T 



(a) 

Scaling results from the Chicago group (JFM, 1989) 

 

 

 

 

 
 

 

 

 



convection in the ocean Ra~1020, near Sun Ra~1023 

Low temperature helium gas, Pr = 0.7, Niemela et al. Nature 2000 

Nu = 0.124Ra0.309 
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•  Global measurements:  Nu (Ra,Pr), Re (Ra,Pr), flow 
visualization 
 

•  Local measurements: local temperature T(r,t), velocity 
v(r,t), local convective heat flux j(r,t) and local thermal 
dissipation rate T(r,t) 

D = 20 cm 

cooling chamber 

heating plate 

H T Water 

0.5, 1 

Turbulent Rayleigh-Bénard convection in water 



Rayleigh-Bénard convection in a upright cylinder 

H = 10 cm,  = D/H = 1, Ra = 3.7  108, Pr  5 (water). 



(a) 

Experimental efforts in my group focus on: 
    
•  Visualization and measurement of the velocity field: velocity fluctuations 
at the cell center (Phys. Rev. Lett. 1992, 1995), velocity boundary layer 
(Phys. Rev. Lett. 1996), large-scale flow structures (Phys. Rev. E 2001, 2005). 
•  Heat transport over rough surfaces (Phys. Rev. Lett. 1996, 1998,           J. 
Fluid Mech. 2000).  
•  Coherent temperature and velocity oscillations (Phys. Rev. E 2000, Phys. 
Rev. Lett.  2001, Phys. Rev. E 2002, 2004, Phys. Rev. Lett.  2011).  
•  Spatial distribution and scaling of the local convective heat flux (Phys. Rev. 
Lett. 2003, Phys. Rev. E 2004, Phys. Rev. Lett. 2008). 
 
•  Thermal dissipation field and its statistics (Phys. Rev. Lett. 2007, Phys. 
Rev. E 2009, J. Turb., 2010, Phys. Fluids 2011). 
•  Effects of cell geometry on turbulent convection (Europhys. Lett., 2010). 
•  Space-time relation in convective turbulence (Phys. Rev. E  2010, 2011). 
•  Anomalous scaling and intermittency of passive temperature fluctuations 
(Phys. Rev. E 2013). 



3. Dynamic features of turbulent RB convection 
(i) Temperature difference T across the fluid layer is concentrated 
on two thin boundary layers of thickness  near the upper and lower 
conducting surfaces.  This is the smallest length scale in turbulent 
thermal convection. 



(ii) Thermal boundary layers are highly dynamic structures, 
from which thermal plumes erupt irregularly to the bulk region. 

6.5 cm  4.0 cm, Ra = 2.6109 



(iii) Spatial distribution of thermal plumes is neither homogeneous 
nor isotropic; thermal plumes organize themselves in a closed cell.   

shadowgraph showing the spatial distribution of thermal plumes 
in an aspect-ratio-one cylindrical cell (from Xia’s group). 



left sidewall 

center 

right sidewall 

018T C 

Ra = 3.3109 



(iv) The warm and cold plumes near the sidewall exert buoyancy forces on 
the fluid and generate a large-scale circulation across the height of the cell. 
The central region is “sheared” by the rising and falling plumes, producing 
a constant mean velocity gradient in the region. 

20cm  14cm, top 2/3 cell, Ra = 2.6109 



LDV measurements of three velocity components  
and their rms values in the plane of the large-scale  
circulation at Ra = 3.7109 (=1 cell). 



Time-averaged (2.2 frames/s, 2104 frames, 2.5 hrs) 
velocity (cm/s) vector map in the plane of large-scale 
circulation (LSC) at Ra = 7.0109.  Acceleration is 
important and is related directly to the local thermal forcing. 



(v) In the =1 cell, the thermal plumes are excited alternately 
between the upper and lower boundary layers. This produces 
temperature and velocity oscillations in the cell with a local 
frequency f0 ≈ U/(2H).   

right  
sidewall 

left  
sidewall 

Ra = 3.2109 



Ra = 1.4109, f0 = 0.0117 Hz 



instantaneous velocity (cm/s) vector maps in the plane 
of LSC with a time delay  t = 31 s and at Ra = 7.0109.  



f0 = U/(2H) ≠ U/(4H) 
U = hH/2 

•   velocity 
○  frequency 
─  0.20Ra0.46 



(vi) Dynamics of thermal plumes in a closed convection cell is a 
self-organizing process in that the plume separation and the large-
scale circulation help each other and they are no longer independent 
any more.  

A simple (time-averaged) cartoon 



Why is turbulent Rayleigh-Bénard convection so interesting?  
 
• It is a model system with simple boundary conditions to study a 

range of interesting problems of turbulence, such as turbulent heat 
transport, boundary layer dynamics, large-scale flow structures and 
dynamics, and coherent oscillations. What causes the self-
organization of the thermal plumes in a closed cell? maximum heat 
transport? minimum dissipation? or some kind of instabilities? 
 

• It has rich dynamics and is a “playground” for experimentalists and 
theorists with interests in non-equilibrium dynamics and non-linear 
physics. 
 

• As an “exactly solvable model system,” it provides a platform for 
interactions between theory, simulation and experiment to test 
different ideas and computational modeling. 



Why is turbulent Rayleigh-Bénard convection so interesting? 
 
• It is relevant to a large number of practical problems, ranging from 

the thermal convection processes in buildings and metal production 
to natural convection at geophysical and astrophysical scales. 



Large-scale astro/geo-physical convection in the outer layer of Sun, 
Earth’s mantle, atmosphere and ocean 

image from: http://bprc.osu.edu image from: http://chandra.harvard.edu 

image from NASA image from NASA 



• To what extend are the results obtained in small- cells 
applicable to large-scale convection problems? This is an 
important question because one wants to understand which 
aspects of convection are universal and which depend on the 
details of spatial geometry.  

• Such an understanding is needed for a large number of practical 
problems ranging from the thermal convection processes in 
buildings and metal production to natural convection occurred at 
geo- and astro-physical scales 

• Two ways to test: (a) scale up the cell or (b) change the cell 
geometry 

4. Turbulent Rayleigh-Bénard convection in a horizontal cylinder 



(a) Scale up the cell 

2.2 m tall high-pressure SF6 vessel 
(upright cylinder) built at the Max 
Planck Institute in Gottingen, 
Germany (Bodenschatz’s lab) 

1 m tall water tank (upright cylinder) 
built at the Chinese University of 
Hong Kong (Ke-Qing Xia’s lab). 



(b) change the cell geometry 

Top and bottom 1/3 of the circular sidewall 
are conducting plates. Sandwiched in the 
middle are two pieces of thermal insulating 
(curved) plate made of Plexiglas. 

“Rayleigh-Bénard convection” in a 
horizontal cylinder 



Geometric parameters: 

cell diameter D = 18.8 cm (fixed) 

cylinder length L: 2 - 31.8 cm  

  = L/D: 0.1 – 1.7 
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Experimental control parameters: 
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( ) UDRe Ra



total heat flux( )

conductive heat flux
Nu Ra 

5108 – 11010 

System responses: 



 = 0.5 cell 

Shadowgraph movie showing the large-scale flow and spatial 
distribution of thermal plumes in a horizontal cylindrical cell.  

Ra = 4.0109, Pr = 74.5 (silicon oil with  = 10 cP) 
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Upright cylinder: Nu = 0.19 Ra0.28 (in water) (Xia & Lui, PRL, 1997) 

        Nu = 0.23 Ra0.282 (in helium gas) (Castaing et al., JFM, 1989) 

4.1 Scalings in turbulent convection 
     (i) Scaling of the Nusselt number  

Nu ~ Ra 0.28 0.01   
( = 1 cell)  

Nu ~ Ra 0.27 0.01   
( = 0.5 cell)  



(ii) Scaling of the Reynolds number Re = VD/  

Upright cylinder: Re = 0.075 Ra0.46 (in water) 
(Qiu & Tong, Phys. Rev. E, 2002)  

Re ~ Ra 0.55 0.03   
( = 0.5 cell)  

Re ~ Ra 0.46 0.03   
( = 1 cell)  



T/ 

Temperature histograms at the center of   = 1 cell 

(iii) Scaling of local temperature fluctuations 

Upright cylinder 
(Du & Tong, Phys. Rev. E, 2001) 

T/ 
Horizontal cylinder 



Upright cylinder: /T = 0.153 Ra-0.14 (in water) (Du & Tong, PRE, 2001) 
         /T = 0.36 Ra-0.147 (in helium gas) (Castaing et al., JFM, 1989) 
Square cell:  /T ~ Ra-0.48 (in water) (Daya & Ecke, PRL, 2001) 

Scaling of the normalized temperature rms 

/T ~ Ra-0.49 0.02   
( = 0.5 cell)  

/T ~ Ra-0.29 0.01   
( = 1 cell)  
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Normalized oscillation period t0/t by LSC turnover time t  

4.2 Dynamic phases (flow modes) of large-scale circulation (LSC) 

(1) All phases show coherent oscillations in the velocity and temperature  
measurements and the oscillation period t0 varies with the aspect ratio . 

 Ra = 2.7 ×  109 

 Ra = 5.5 ×  109 



(i) Two-dimensional rotation (2DR):  Γ ≤ 0.16 

4× movie,  = 0.16, Ra = 3.4× 109 
and Pr = 4.3 (water). Vertical velocity profile 

Flow is highly confined in a thin disk-like cell with a quasi-2D LSC in 
the circular plane of the cell. No 3D flow mode can be exited. 



δI4 plume image 
 
H0 total heat flux 
 
T5 local temperature  
U3 local velocity 

Power spectrum of four different signals 

f0 

(2) The coherent oscillations are produced by periodic emission of thermal 
plumes from the upper and lower boundary layers, which gives rise to a 
pulsed LSC.  The coupling between the two boundary layers can be 
explained by a new solution of Villermaux’s model.  
              H. Song, E. Villermaux and P. Tong, Phys. Rev. Lett. 106, 184504 (2011) 



30 movie taken at Ra = 7.3109 and Pr  5 (water).  
Floater is located at the center of bottom surface. 

(ii) Small- Diagonal Switching (SDS): 0.16< Γ ≤ 0.82 

1 cm 



Histogram H() of the angular position (t) of  
the LSC rotation plane (2-h-long floater data) 

 = 0.7 cell 
Ra = 5.5 109 

(3) The rotation plane of the LSC is aligned along the longest path of 
the cell - the diagonal of the cylinder, and switches periodically between 
the two diagonals, spanning across the curved sidewall. 



(4) In the SDS phase, the switching period t0 is found to be approximately 
equal to the LSC turnover time t.  

Correlation function and power spectrum of local velocity fluctuations 

 = 0.5 
Ra = 5.5 109 



(iii) Large- Diagonal Switching (LDS): 0.82< Γ ≤ 1.69 

 = 1  

Histogram H() of the angular position (t) of  
the LSC rotation plane (2-h-long floater data) 

Ra = 5.5109 

(5) In the LDS phase, the rotation plane of the LSC switches periodically 
between the two longest diagonals of the cell, spanning across the flat 
end wall.  



UsinV Local velocity measurement: 

top view 

side view 

LS
C 

LDV 
V 

V 

The LSC orientation oscillates 
between two diagonals of the cell 

 = 1 

Ra = 5.5109 



Transition aspect ratio c  0.82 

1.4 + 4exp (-/0.25) 

( 3 / 2) 0.86AB D D L

(6) The rotation plane of the LSC oscillates between the two diagonals 
with the shortest span possible (sensitive to the shape of the conducting 
plates). The normalized switching period t0/ t is exponentially 
dependent on the aspect ratio  (or  = (-c)/c). 



Switching, f0 

Wiggling, f1 

=1, Ra = 5.5109 

Coexist of the switching and wiggling modes in the horizontal cylinder  

(7) The wiggling mode around the corner of the diagonal plane is 
explained by the Brown–Ahlers model. The switching mode between 
the diagonals is a new type of oscillation, which has not been observed 
in the upright cylinders. 

=1 
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f0~ Ra0.51± 0.02 

Switching frequency 
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 = 1.0 
 = 1.2 

 = 1.7 

-/2       -/4           0          /4          /2 
           LSC orientation  

 = 1.7 

 = 1.0  = 1.2 

V
(

)/V
0 

V()/V0 = -ln[P()]+const. Ra = 5.5109 

(8) The periodic switching of the LSC orientation between 
the two diagonals of the cell involves a crossing over an 
effective energy barrier, V()/V0, which decreases with . 

Probability density function (pdf) P() of the LSC orientation (t) 
over varying    



Comparison between the measured potential Vg()/V0 and 
the calculation based on the Brown-Ahlers model (which is a 
low-dimensional model with turbulence noise)  

(9) The dynamics of the LSC orientation is adequately described by the 
Brown-Ahlers model involving a geometry dependent potential Vg() of 
double-well shape with a barrier height Vg(). The normalized switching 
period t0/t is linked to Vg() via an Arrhenius-Kramers type of equation. 

0(0.4 / )
0 / 1.26 gV V

tt e


Ra = 5.5109 

 = 1  

 Ra = 2.7 ×  109 

 Ra = 5.5 ×  109 



Comparison between the measured pdf P() and the calculation 
based on the Brown-Ahlers model  



(iv) Periodic Rocking (PR): 1.3 ≤ Γ ≤ 1.69 

Temperature of the bottom plate 

T5 

T7 

Positions of local temperature 
measurements near the sidewall 

T8 

T6 

Temperature TO at position O 

PR PR LDS 

PR LDS 



Power spectrum of temperature fluctuations at positions B, O, and C. 

Coexistence of the PR and LDS phases 

PR, fR  tR = −502 + 542Γ 

(10) In the PR phase, the bulk fluid rocks back and forth as a whole around 
the central axis of the horizontal cylinder. The rocking period increases 
linearly with . The PR phase coexists with the LDS phase, and the two 
flow modes compete and occupy the cell in a random fashion. 

LDS, f0 
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Four flow modes are identified in the horizontal cylinder with 
varying Γ, all of them having coherent oscillations associated 
with LSC.  

LDS: 0.82< Г ≤1.69 

2DR: Г ≤ 0.16 

SDS: 0.16 < Г ≤  0.82 
LSC switching across  
the curved sidewall  

PR:   1.3 ≤ Г ≤ 1.69 Periodic rocking around  
the long axis of the cylinder 

LSC switching across  
the flat end wall 

In-plane pulsed rotation,  
no 3D switching 



5. Summary  
•  Dynamics in turbulent thermal convection is determined primarily 
by thermal plumes.   
 

•  Thermal plumes organize themselves in a closed cell and generate a 
large-scale circulation (LSC) across the height of the cell.  
 

•  Heat transport is carried out mainly by the thermal plumes. The 
spatial separation of warm and cold plumes and the resulting LSC 
provide a fast channel along the cell periphery for the transport of heat.  
 
•  Thermal plumes produce strongly correlated temperature and 
velocity signals, which result in intermittent fluctuations of the local 
heat flux. 
 
•  Structural measurements are essential to the physical understanding 
of convective turbulence. 



5. Summary (cont.)  
• Scaling of the Nusselt number remains unchanged. Evidently, the 

boundary layer dynamics, which determine the heat transport, remain 
the same under different cell geometry.  
 

• Scaling of the Reynolds number remains the same, insensitive to the 
geometry change. Buoyancy forces, which drive the large-scale flow, 
are independent of cell geometry. 
 

• Scaling of the normalized temperature rms changes with the cell shape. 
Global flow structures affect the scaling of local temperature 
fluctuations but not much to their PDF. 

 
• Large-scale circulation in the horizontal cylinder shows more 

interesting dynamics, which is sensitive to cell geometry. Four flow 
modes are identified in the horizontal cylinder with varying Γ, all of 
them having coherent oscillations associated with LSC. (Universal?) 
mechanism for coherent oscillations in turbulent convection remains 
unsettled. 



5. Summary (cont.) 
• The oscillations in the thin cell (Г=0.16) are caused by the in-phase 

periodic emission of thermal plumes between the upper and lower 
boundary layers.  

• For 0.16< Г ≤  0.82, the rotation plane of LSC switches periodically 
between the two diagonals of the cell, spanning across the curved 
sidewall. 

• For 0.82< Г ≤ 1.69, the periodic switching spans across the flat end 
wall. In this phase, the motion of the LSC orientation can be 
considered as a damped harmonic oscillator moving in a double-well 
potential, where the two minimum potential positions correspond to 
the two diagonals of the cell. 

• For 1.3 ≤ Г ≤ 1.69, the bulk fluid as a whole rotates around the central 
axis of the horizontal cylinder with periodic reversals. 
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For turbulent Rayleigh-Bénard convection, we have 
  
• three local variables, v(r,t), T(r,t) and p(r,t), and three 

equations. 
 

• two corresponding dissipation rates, u and T. 
 

• There are two exact relations: 

1. Dissipations in Rayleigh-Bénard Convection 

2 2
,[ ( )] ( / ) ( ,Pr)T i V tT ,t T H Nu Ra       r

2 3 4 2
,[ ( , )] ( / )( 1) Pru i j V tt H Nu Ra        v r



Understanding heat transport, Nu(Ra,Pr), in turbulent convection 
through spatial decomposition of the dissipation fields u and T 

, ,T T BL T bulk   

2
, ( / ) ( / )u BL u uu H   

, ,u u BL u bulk   

3
, /u bulk u H

2
, ( / ) ( / )T BL T TT H   

2
, ( ) /T bulk u T H  

 
Phenomenology of Grossmann & Lohse (JFM, 2000; PoF, 2004):  

         
boundary versus bulk 



Understanding of small-scale properties of turbulence through 
the statistics of dissipation fluctuations u and T 

Kolmogorov refined similarity hypothesis (JFM, 1962) 
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Scale-dependent fluctuations of u(r) and T(r) will give rise to 
anomalous scaling (intermittency) for the velocity and 
temperature structure functions (SFs).   

r
2

3
0

4( ) ' '
(4 / 3)u ur r dr

r


 


 

r
2

3
0

4( ) ' '
(4 / 3)T Tr r dr

r


 


 



Our recent work: 

• “Measured thermal dissipation field in turbulent Rayleigh-Benard 
convection,” X.-Z. He, P. Tong, and K.-Q. Xia, Phys. Rev. Lett. 98, 
144501 (2007). 

• “Measurements of the thermal dissipation field in turbulent 
Rayleigh-Benard convection,” X.-Z. He and P. Tong, Phys. Rev. E 
79, 026306 (2009). 

• “Statistics of the locally averaged thermal dissipation rate in 
turbulent Rayleigh–Benard convection,” X.-Z. He, P. Tong and E. 
Ching, J. of Turbulence, 11, No. 35, 1-10 (2010). 

• “Locally-averaged thermal dissipation rate in turbulent thermal 
convection: A decomposition into contributions from different 
temperature gradient components,” X.-Z. He, E. Ching, and P. 
Tong, Phys. Fluids 23, 025106 (2011). 

• “Scaling behavior in turbulent Rayleigh-Benard convection 
revealed by conditional structure functions,” E. Ching, Y.-K. Tsang, 
T. N. Fok, X.-Z He and P. Tong, Phys. Rev. E 87, 013005 (2013). 



2. Measurement of the local thermal dissipation rate 

Instantaneous local viscous dissipation rate: 

,
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u

i j j j

u u
t

x x
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Instantaneous local thermal dissipation rate: 
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Total convective heat flux across the cell: 
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Time-averaged local thermal dissipation rate: 



Local temperature gradient probe: 

First probe: d = 0.17 mm  
xi = 0.8 mm, Tmin  5 mK 

Second probe: d = 0.11 mm 
xi = 0.25 mm, Tmin  5 mK 

  0.8 mm at Ra = 3.6 109 
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1 and 0.5D

H
  

Rayleigh-Bénard convection cell 

four ac bridges with lock-in amplifiers  
operated at f  1 kHz and Δf = 100 Hz 

cooling chamber 

heating plate 

Water H T 

D  

o1 to 40 CT



(i) In the bulk region, f is  
dominant and m is negligibly  
small. 
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(ii) f increases rapidly in the                          
                  region and is ~140  
times larger than that at the cell  
center.  

1 / 10z  

f 

m 

f 

3. Scaling behavior of the local thermal dissipation rate 

3.1 Spatial distribution of the thermal dissipation field 



Ra = 3.9109
 

 
              

              
m 

f 

(iii) In the thermal boundary layer, m becomes dominant     
       and f is smaller. 



(iv) f has three terms, f = x + y + z, and the dominant term  
is z, which is twice larger than x and y. 
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(v) f ~ Ra- with  = 0.33 ± 0.03 both at the cell center 
and near the sidewall. 

109 1010
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109 1010
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10
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Ra

At the cell center Near the sidewall 

1.9103 Ra-0.33 
1.05104 Ra-0.33 

3.2 Ra-dependence of the local thermal dissipation rate 



(vi) m ~ Ra+ with  = 0.63 ± 0.05 inside the thermal boundary 
layer. 
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Inside the thermal boundary layer (almost touching the lower 
surface) 

3.810-4 Ra0.63 
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Near the sidewall at Ra = 3.6109 
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3.3 Scale-dependent statistics of dissipation fluctuations f (r,t)  



Histogram of the three temperature gradient components 

At the cell center Near the sidewall 

Ra = 4109 

Approximately isotropic  Anisotropic fluctuations 

Ra = 8.3109 



Challenges in identifying anomalous scaling in turbulent convection 

•  Convective flow in a closed cell is neither homogeneous nor isotropic 
    -  three representative locations in the cell:  
    at the center, near the sidewall and near the lower conducting plate  
    -  decomposition of the local dissipation rate into contributions  
    from three different temperature gradient components. 
 
•  Bolgiano length and separation of passive and active scalars within a   
    limited range of length scales  
 
 
 
•  Connection of time-domain results to the theory in spatial domain 
   Taylor’s frozen-flow hypothesis does not hold in turbulent convection  
  
             Lohse & Xia, Annu. Rev. Fluid Mech. (2010) 
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Scale-dependent statistics of the locally averaged  (r,t)  
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Assuming       has a hierarchical structure of the She–Leveque form, 
one finds                 [Ching & Kwok, PRE 62, 7587(R) (2000)] 
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where c = 3 - D is co-dimension of the most dissipative structures,  
 = 1- b (for velocity scaling) and  
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Scaling of        at the cell center: ( )z p

 

Ra = 8.3  109 

LSC turnover time 0  35 s; local Bolgiano time B  0 LB(z)/L  31 s. 
Dissipation time d = 0 (10)/L  0.8 s. 
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Extended self-similarity (ESS) plots 

Convergence and accuracy of the measured  
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Central: c = 1 (sheet-like),  = 1/3 and  = 2/3 (passive) 

Scaling exponent z(p) at the cell center: 

Ra = 8.3  109 

(p) = c(1- )- pp  

  ESS plot 



In the central region, x(p) and y(p) are the same as z(p):  
c = 1 (sheet-like),  = 1/3 and  = 2/3 (passive) 

Scaling of         and              at the cell center: ( )x p

  ( )y p

 

Ra = 8.3  109 

(p) = c(1- )- pp  



x and y components: c = 1 (sheet-like),  = 1/3 and  = 2/3 (passive) 

z-component: c = 2 (filament-like),  = 2/3 and  = 2/3 (passive) 

Scaling of         near the sidewall: ( )i p

 

Ra = 8.3  109 

(p) = c(1- )- pp  



Temperature fluctuations near the lower conducting plate are 
governed by the thermal boundary layer thickness, , which 
decreases with increasing Ra. Measurements were made in the 
peak region (0.5  z/  0.9).  

Ra = 1.75  109 

Ra = 1.75 109 

Temperature profile and histogram of the temperature gradient 
components near the thermal boundary layer  



Inside the thermal boundary layer (all components): 
c = 1 (sheet-like),  = 3/5 and  = 2/5 (active) 

Ra = 8.3  109 

(p) = c(1- )- pp  

Scaling of         near the lower conducting plate: ( )i p

 

Local Bolgiano time B  0 LB(0)/L  3.5 s. 



Sidewall: c = 2.4 (sheet-like),   = 0.72 and  = 2/3 (passive) 

Scaling exponent (p) of the total dissipation:  

(p) = c(1- )- pp  

cell center 

boundary layer 

Ra = 8.3  109 



( )  (1- ) - 1-[1- ( )] ( )p pp c p z z p      

 z = 0 
 z = 0.5 
+ z = 0.75 
 z = 1 
 z = 2   
* z = 100 

z = 100 

z = 0 

Evolution of (p) along the central axis 



• While the intermittency problem of passive scalars is understood 
in the Kraichnan model, direct experimental verification was made 
only partially by measuring the velocity and temperature SFs. 

• The interpretation of early measurements of SFs in turbulent 
convection was complicated by other effects, such as flow 
anisotropy and buoyancy effect at the Bolgiano scale. 

• To test the refined similarity ideas for anomalous scaling, one 
needs to check the r-scaling of both the SFs and u(r) and T(r).  

• Recently, the space-resolved velocity and temperature SFs were 
obtained by PIV and multiple temperature probes (Sun et al., Phys. 
Rev. Lett., 2006). 

• DNS studies (Calzavarini et al., Phys. Rev. E, 2002; Kunnen et al., 
Phys. Rev. E, 2008) identified the active and passive regions in the 
convection cell. 

• More recently, we measured the instantaneous T(x,t) and studied 
its spatial distribution (He et al., Phys. Rev. Lett., 2007; Phys. Rev. E 
2009) and statistics (He et al., J. Turbulence, 2010; Phys. Fluids, 2011).  

4. Test of the anomalous scaling of passive temperature fluctuations  



HST13S (black solid squares, present work, RBC near sidewall);SZX06S (black open 
squares, RBC near sidewall);AHGA84 (Blue triangles, heated jet);MSKF90 (Green 
diamonds, heated wake);GW04 (black crosses, grid turbulence);SZX06C (blue circles, 
RBC at cell center);RCBC96 (purple diamonds, heated wake);LM09 (green flakes, 
grid turbulence);HST13C (red solid circles, present work, RBC at cell center). 
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Equal-time velocity correlation function: 

5. Space-time relation in turbulent Rayleigh-Bénard convection  

 Velocity structure functions: 
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 (i) Temporal velocity correlation function: 

 or frequency power spectrum: 
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 Single-point time series measurements (LDV, hot wire, …): 

 (ii) Temporal velocity structure functions: 
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 Two-point time series measurements (PIV or two local probes): 

 Velocity space-time cross-correlation function: 
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Taylor’s frozen flow hypothesis: 
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 Elliptic model of He and Zhang (Phys. Rev. E, 2006) 
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iso-correlation contours 
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 Temperature space-time cross-correlation function: 

 Two-point temperature measurements over varying distance r 

Temperature is a passive scalar in the bulk region, and thus 
CT(r,) is expected to have the same scaling form as Cu(r,) does. 

 Near the sidewall  At the cell center  



3-D plot of the measured   ,rCT
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Er r U V      0,, ETT rCrC 

2-D plot of iso-correlation contours 

He, He and Tong,  Phys. Rev. E, 81, 065303(R), 2010. 

   Experiment confirms the elliptic model: 

Experimental results near the sidewall 
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Taylor’s hypothesis Elliptic model 

Taylor’s hypothesis does not hold 
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Ra = 21010 
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  Power spectrum: 
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Taylor’s micro-scale: 

2 2
Er U V  

Single-point temperature measurement (r = 0): 
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Ra = 21010 



3-D plot of the measured   ,rCT 2-D plot of iso-correlation contours 
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     He and Tong, Phys. Rev. E, 83, 037302 (2011). 

   Experiment confirms the elliptic model: 
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Experimental results at the cell center 



 Scaling behavior of CT(r,) in the central region of the cell 

2 2   0p

U
r U

U V
   


Symmetric shape with  8.5 mm/sV and  

Measured mean velocity:                        

U0 = 0 

and rms velocity:  

u = 8 mm/s 

Kraichnan’s random sweeping hypothesis is valid in the inner region. 

Ra = 21010 



 Comparison between CT(rE,0) and CT(r,0) in the bulk region 

 
22 2 2( ) ( )Er r U r V r   

Ra = 21010 



Show that 

•  At the cell center, we have rE = V (r = 0) and the average over d 

(or dt) is equivalent to the average over drE (average over a sphere of 
radius rE = Vt). 

Connection of time-domain results to the theory in spatial domain  
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22 2 2Given that , ,0  with T T E EC r C r r r U V     

•  Near the sidewall, we have rE = (U2+V2)1/2  (r = 0) and the average 
over d (or dt) is equivalent to the average over drE (average over a 
ellipsoid of major axis rE = (U2+V2)1/2  and minor axis rE =  Vt). 



6. Summary  
• Measured thermal dissipation field has the form T(r) = m(r) + f (r), 

with m(r) concentrating in the thermal boundary layers and f (r) 
occupying mainly in the plume-dominated bulk region.  
 

• Measured f (r) ~ Ra-0.33 in the bulk region and m(r) ~ Ra+0.63 inside 
the thermal boundary layer. 

• Measured moments have the power-law form     with  
          for all three temperature gradient components 
and for all values of p up to 6 and are observed at three representative 
locations in the cell.  

 
• Scaling of              contains two contributions: (i) the horizontal 

exponents i(p) (i = x,y) have the same parameters in the bulk region: 
c = 1 (sheet-like) and  = 2/3 (passive scalar) but become c = 1 (sheet-
like) and  = 2/5 (active scalar) in the thermal boundary layer.  

( )( )
ii p p

  
(p) = c(1- )- pi p  

( )i p

 



• (ii) Superimposed on this background is the vertical exponent z(p), 
which varies with the position. At the cell center and inside the thermal 
boundary layer, z(p) remains the same as the two horizontal 
exponents, whereas near the sidewall, z(p) becomes different from     
 i(p) (i = x,y) with the parameters c = 2 (filament-like) and  = 2/3 
(passive scalar).  

• Measured temperature space-time cross-correlation function CT(r,) 
has the scaling form CT(rE,0) with rE

2 = (r-U)2 +V 22. This equation 
goes beyond Taylor’s frozen flow hypothesis and gives a linear 
relationship between rE

   and  when r = 0.   
• A good agreement between the temperature-velocity CSF exponents 

and the dissipation exponent is observed. The experiment reveals that 
the anomalous scaling of passive temperature fluctuations is indeed 
caused by the spatial intermittency of the dissipation field. The 
experiment also demonstrates that the functional form of the SF and 
CSF exponents changes with the geometry of the most dissipative 
structures in the flow. 
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